Antioxidant and Antibacterial Properties of Opuntia spp. Extracts and Their Role in Enhancing Probiotic Enterococcus Durans from Honeybee (Apis Mellifera Meda)
Abstract
The objective of this study was to investigate the antioxidant and antibacterial activities of Prickly Pear Cactus extracts and their effects on stimulating the probiotic activity of Enterococcus Durans isolated from the honey stomach of honeybees (Apis Mellifera Meda). After extraction of fresh fruit, the phenolic and flavonoid contents and antioxidant activity were determined using Folin Ciocalteu reagent, colorimetric aluminum chloride, and 2-Diphenyl-1-Picrylhydrazyl (DPPH) assays. Lactic Acid Bacteria (LAB) were isolated from the honey stomach using selective media, and their antimicrobial compounds were extracted. The antimicrobial activity of cactus extracts and crude bacteriocins against Gram-positive bacteria was evaluated by the well diffusion method. Finally, the effect of a mixture of cactus extracts and bacteriocins on the probiotic activity of the isolated bacteria was assessed. The average antioxidant activity was 38.6 ± 3.5 mg/ml. All extracts exhibited antimicrobial activity against pathogenic organisms, with Enterococcus Durans showing the highest activity; Bacillus cereus was the most sensitive bacterium. The responsible compounds in the cactus inhibited the growth of pathogenic bacteria and enhanced the activity of LAB to varying degrees.
Keywords:
Antioxidant activity, Prickly pear cactus, Enterococcus Durans, Apis Mellifera Meda, Probiotic activityReferences
- [1] Stiles, M. E., & Holzapfel, W. H. (1997). Lactic acid bacteria of foods and their current taxonomy. International journal of food microbiology, 36(1), 1–29. https://doi.org/10.1016/S0168-1605(96)01233-0
- [2] Vuyst, L., & Vandamme, E. J. (1994). Bacteriocins of lactic acid bacteria: Microbiology, genetics and applications. Springer. https://doi.org/10.1007/978-1-4615-2668-1%0A%0A
- [3] Barthlott, W., & Hunt, D. R. (1993). Cactaceae. In Flowering plants· dicotyledons: Magnoliid, Hamamelid and caryophyllid families (pp. 161-197). Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-02899-5_17
- [4] Guzmán, C. L. U. (1997). Grupos taxonómicos. In Suculentas Mexicanas/cactáceas (pp. 37–41). CVS Publicaciones. https://books.google.com/books/about/Suculentas_mexicanas.html?id=ub5gAAAAMAAJ
- [5] Pimienta-Barrios, E., & Del Castillo, R. F. (2002). Reproductive biology. In Cacti: Biology and uses. university of California press, Berkeley (pp. 75–90). Berkeley and Los Angeles, California, USA: University of California Press. https://www.scirp.org/reference/referencespapers?referenceid=1425335
- [6] El Kossori, R. L., Villaume, C., El Boustani, E., Sauvaire, Y., & Méjean, L. (1998). Composition of pulp, skin and seeds of prickly pears fruit (Opuntia ficus indica sp.). Plant foods for human nutrition, 52(3), 263–270. https://doi.org/10.1023/A:1008000232406
- [7] Sepúlveda, E., & Sáenz, C. (1990). Chemical and physical characteristics of prickly pear (Opuntia-Ficus-Indica) Pulp. Revista de Agroquimica y Tecnologia de Alimentos, 30(4), 551-555.
- [8] Schmidt Hebbel, H., Pennacchiotti Monti, I., Masson Salaué, L., & Mella Rojas, M. A. (1990). Chemical and physical characteristics of prickly pear (Opuntia ficus indica) pulp. Universidad de Chile, Facultad de Ciencias Químicasy Farmacéuticas, Santiago. https://repositorio.uchile.cl/handle/2250/121427
- [9] Niknejad, K., Sharifzadeh Baei, M., & Motallebi Tala Tapeh, S. (2018). Synthesis of Metformin Hydrochloride nanoliposomes: Evaluation of physicochemical characteristics and release kinetics. International journal of nano dimension, 9(3), 298–313. https://journals.iau.ir/article_659887_c9737398d6ce3f78d13a1fa5900b2c17.pdf
- [10] Galati, E. M., Mondello, M. R., Giuffrida, D., Dugo, G., Miceli, N., Pergolizzi, S., & Taviano, M. F. (2003). Chemical characterization and biological effects of sicilian opuntia ficus indica (L.) Mill. Fruit juice: Antioxidant and antiulcerogenic activity. Journal of agricultural and food chemistry, 51(17), 4903–4908. https://doi.org/10.1021/jf030123d
- [11] Kuti, J. O. (2004). Antioxidant compounds from four opuntia cactus pear fruit varieties. Food chemistry, 85(4), 527–533. https://doi.org/10.1016/S0308-8146(03)00184-5
- [12] Piga, A., Caro, A. D., Pinna, I., & Agabbio, M. (2003). Changes in ascorbic acid, polyphenol content and antioxidant activity in minimally processed cactus pear fruits. LWT-food science and technology, 36(2), 257–262. https://doi.org/10.1016/S0023-6438(02)00227-X
- [13] Stintzing, F. C., & Carle, R. (2005). Cactus stems (Opuntia spp.): A review on their chemistry, technology, and uses. Molecular nutrition & food research, 49(2), 175–194. https://doi.org/10.1002/mnfr.200400071
- [14] Stintzing, F. C., Schieber, A., & Carle, R. (2001). Phytochemical and nutritional significance of cactus pear. European food research and technology, 212(4), 396–407. https://doi.org/10.1007/s002170000219
- [15] Wang, H., Cao, G., & Prior, R. L. (1997). Oxygen radical absorbing capacity of anthocyanins. Journal of agricultural and food chemistry, 45(2), 304–309. https://doi.org/10.1021/jf960421t
- [16] Kitts, D. D., Wijewickreme, A. N., & Hu, C. (2000). Antioxidant properties of a North American ginseng extract. Molecular and cellular biochemistry, 203(1), 1–10. https://doi.org/10.1023/A:1007078414639
- [17] Farr, D. R. (1997). Functional foods. Cancer letters, 114(1), 59–63. https://doi.org/10.1016/S0304-3835(97)04626-0
- [18] Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of food and drug analysis, 10(3), 178-182. https://doi.org/10.38212/2224-6614.2748
- [19] McDonald, S., Prenzler, P. D., Antolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food chemistry, 73(1), 73–84. https://doi.org/10.1016/S0308-8146(00)00288-0
- [20] Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-food science and technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
- [21] Babakhani, B., Houshani, M., Tapeh, S. M. T., Nosratirad, R., Shafiee, M. S., & Heidari Keshel, S. (2019). The Evaluation of antioxidant and anticancer activity of alfalfa extract on MCF7 cell line. Regeneration, reconstruction & restoration (triple r), 4(1), 9–14. https://doi.org/10.22037/rrr.v4i1.29646
- [22] Olofsson, T. C., & Vásquez, A. (2008). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee apis mellifera. Current microbiology, 57(4), 356–363. https://doi.org/10.1007/s00284-008-9202-0
- [23] Mourad, K., Halima, Z. K., & Nour-Eddine, K. (2005). Detectionn and activity of plantaricin OL15 a bacteriocin produced by lactobacillus plantarum OL15 isolated from Algerian fermented olives. Grasas y aceites, 56(3), 191–197. https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/107
- [24] Gautam, N., & Sharma, N. (2009). Purification and characterization of bacteriocin produced by strain of Lactobacillus brevis MTCC 7539. Indian journal of biochemistry & biophysics, 46(4), 337-341. https://www.researchgate.net/profile/Neha-Gautam-3/publication/26854928
- [25] Motalebi Tala Tapeh, S., Sharifzadeh Baei, M., & Heidari Keshel, S. (2021). Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: Physicomechanical and biological assessment. Materials science and engineering: C, 119, 111517. https://doi.org/10.1016/j.msec.2020.111517
- [26] Ennahar, S., Sashihara, T., Sonomoto, K., & Ishizaki, A. (2000). Class IIa bacteriocins: Biosynthesis, structure and activity. FEMS microbiology reviews, 24(1), 85–106. https://doi.org/10.1111/j.1574-6976.2000.tb00534.x
- [27] Lasagno, M., Beoleito, V., Sesma, F., Raya, R., de Valdez, G., & Eraso, A. (2002). Selection of bacteriocin producer strains of lactic acid bacteria from a dairy environment. The new microbiologica, 25(1), 37—44. https://europepmc.org/article/med/11837389
- [28] Ciocan, D., & Bara, I. (2007). Plant products as antimicrobial agents, Analele Stiintifice ale Universitatii “Alexandru Ioan Cuza”. Genetica si biologie moleculara, 8(1), 151–156. https://www.researchgate.net/publication/285433432
- [29] Hayek, S. A., & Ibrahim, S. A. (2012). Antimicrobial activity of xoconostle pears (Opuntia matudae) against Escherichia coli O157: H7 in laboratory medium. International journal of microbiology, 2012(1), 368472. https://doi.org/10.1155/2012/368472
- [30] Varghese, J., & Kumar, P. (2012). Analyze the efficacy of Opuntia fragilis against bacteria and its effects on diabetic protein butyryl cholinesterase. Drug discovery, 1(2), 33–35. https://www.discoveryjournals.org/drugdiscovery/current_issue/2012/A5.pdf